Foil heating and cooling; injection beam absorber (ACD)

Alexander Drozhdin and Igor Rakhno

Fermilab

Project X Collaboration Meeting, September 11-12, 2009

Foil heating and cooling

0 4.3 ms

- Thermal analysis is performed for a single cycle (4.284 msec) with subsequent **radiation cooling** until next cycle.
- The hottest spot with linear dimension ≈ 0.3 mm (codes STRUCT/ORBIT)
- Heat *conduction* in the foil is *ignored* (ANSYS is not used)
- 2.67E13 proton/cycle @ $10 \text{ Hz} \rightarrow 2.67E14 \text{ proton/sec}$

$$\cdot \frac{\partial T}{\partial t} = \frac{N}{\rho c_p} \left| \frac{dE}{dz} \right| - \frac{\varepsilon \sigma_{SB}}{\Delta z \rho c_p} (T^4 - T_0^4) \qquad 0 \le t \le \tau_p$$

$$\frac{\partial T}{\partial t} = -\frac{\varepsilon \sigma_{SB}}{\delta t} (T^4 - T_0^4) \qquad (1 \le t \le \tau_p)$$

$$\frac{\partial T}{\partial t} = -\frac{\varepsilon \sigma_{SB}}{\Delta z \rho c_p} (T^4 - T_0^4)$$

$$\tau_p \le t \le \tau$$

Measured dependence of specific heat, c_p, on T (graphite)

Foil heating and cooling

- Valeri Lebedev suggested taking into account that a fraction of generated δ-electrons will escape the foil thus reducing the amount of deposited energy. And the foil can be rotated by, e.g. 45 degrees, relative to the beam → extra reduction factor of 1.4 due to increased area of the hottest spot.
- Detailed calculation of the fraction was performed with MCNPX 2.6 code. It allows us to track electrons (and secondary photons) down to 1 keV. (Range of 1-keV electrons is approximately 1% of the foil thickness.) In this calculation uniform spatial distribution of generated δ-electrons was used. Realistic energy and angular distributions were employed.
- According to MCNPX 2.6, 23% of energy deposited in the 600- μ g/cm² carbon foil by 2-GeV protons due to ionization (dE/dx) will be taken away by the δ -electrons. That is, 77% of the initially deposited energy will give rise to the foil heating.

Foil temperature without rotation

Foil rotation \rightarrow T_{max} / 1.4 = 3320 / 1.4 \approx 2350 K \rightarrow **ANSYS can help**

Injection beam absorber

- Calculations with STRUCT and MARS codes
- Surface water activation
- Power density in magnet coils
- Residual activity

Example of STRUCT output which serves as an input to MARS code

- 2% of H⁻ miss the foil \rightarrow Q₁
- 1% of $H^0 \rightarrow absorber$

Geometry

Plan view

Cross section

Calculated star density distributions

Plan view Elevation view

Surface water activation (using sump pumps)

- Groundwater activation takes more time and requires analysis of geological structures (K. Vaziri).
- For this beam absorber (30 cm thick iron surrounded with 30-cm bricks of concrete) the calculated $S_{max} \approx 1.55E5$ star/cm³*sec
- According to Concentration Model it means the surface water gets
 activated to the permitted max in about 4 months → removal of activated
 water 3 times a year. Common practice is to do that once a year.
- The absorber and shielding can be optimized to reduce the rate of surface water activation.

Absorbed dose in magnet coils

Usually **epoxy** can survive absorbed dose up to 400 Mrad = 4 MGy

Q1
$$\rightarrow$$
 4.8 MGy/yr \rightarrow \approx 1 yr
Q2 \rightarrow 0.4 MGy/yr \rightarrow 10 yrs

Residual dose (it is good to have it $\approx 100 \text{ mrem/hr}$)

Elevation view

Conclusions

- Foil heating without taking into account heat conduction is too high (≈2350 K). ANSYS calculations should provide more realistic data.
- Surface water activation can be reduced by means of absorber/shielding optimization. Removal of activated water can be required twice or once a year.
- The problem of activation of beam line components (mostly absorber) can be mitigated with **extra marble shielding** applied to the absorber.
- Survival of the quad immediately downstream the foil looks like the major show-stopper. The epoxy in the quad coils will survive for about a year.